

12 A Three-quadrant triacs high commutation Rev. 01 — 13 March 2007

Product data sheet

1. Product profile

1.1 General description

Passivated, new generation, high commutation triacs, in a SOT78 plastic package.

1.2 Features

Very high commutation performance
 High immunity to dV/dt maximized at each gate sensitivity

1.3 Applications

- High power motor control e.g. washing machines, vacuum cleaners
- Refrigeration and air conditioning compressors

1.4 Quick reference data

- V_{DRM} ≤ 600 V (BTA312-600B/C)
- V_{DRM} ≤ 800 V (BTA312-800B/C)
- I_{TSM} \leq 95 A (t = 20 ms)

- Non-linear rectifier-fed motor loads
- Electronic thermostats
- I_{GT} \leq 50 mA (BTA312 series B)
- I_{GT} \leq 35 mA (BTA312 series C)
- I_{T(RMS)} \leq 12 A

SOT78 (TO-220AB)

2. Pinning information

Table 1.	Pinning		
Pin	Description	Simplified outline	Symbol
1	main terminal 1 (T1)		N 1
2	main terminal 2 (T2)	mb	T2-T1
3	gate (G)	۲ 🔾 ۲	Sym051
mb	mounting base; main terminal 2 (T2)		

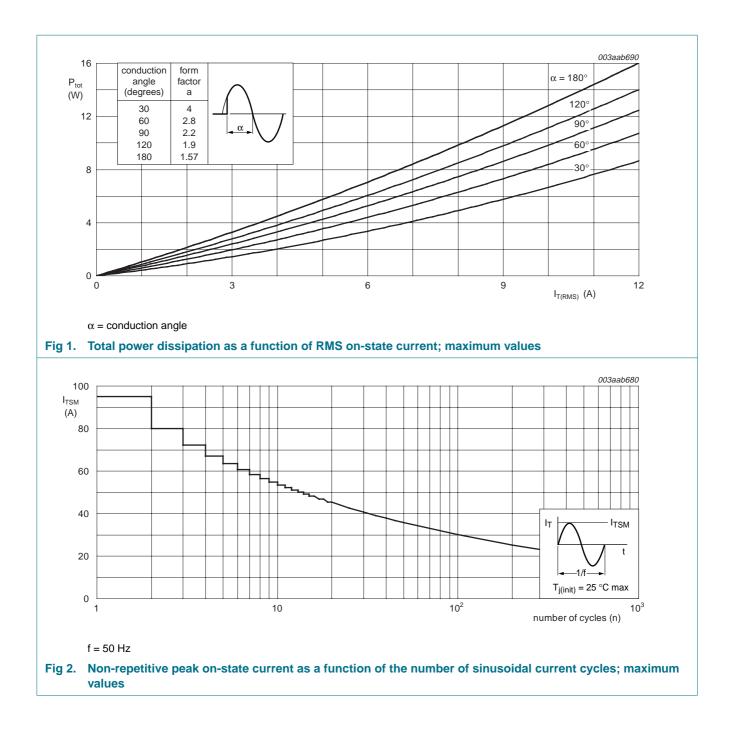
12 A Three-quadrant triacs high commutation

3. Ordering information

Table 2. Ordering information											
Type number	Package	Package									
	Name	Description	Version								
BTA312-600B	SC-46	plastic single-ended package; heatsink mounted; 1 mounting hole;	SOT78								
BTA312-600C		3-lead TO-220AB									
BTA312-800B											
BTA312-800C											

4. Limiting values

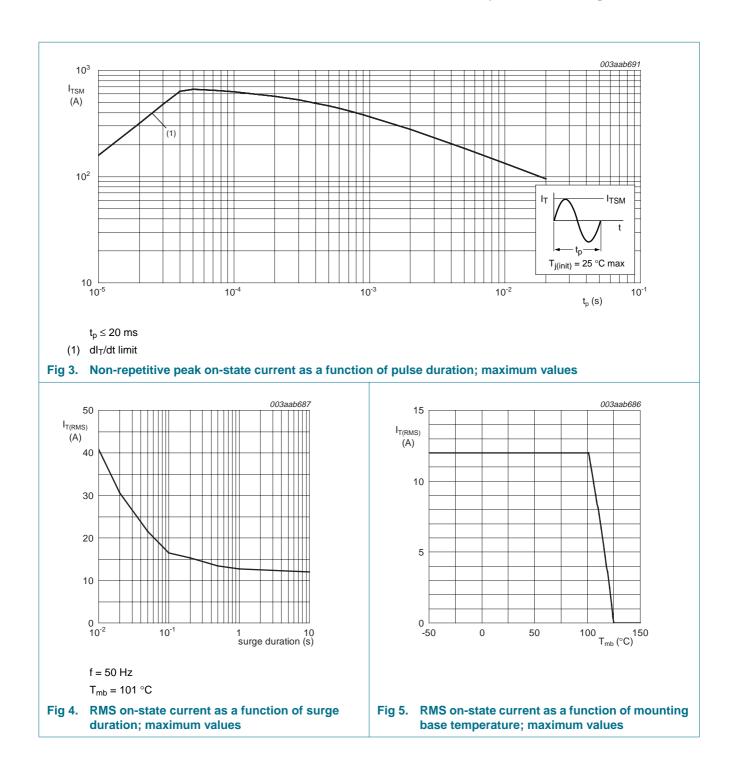
Table 3.Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DRM}	repetitive peak off-state voltage	BTA312-600B; BTA312-600C	<u>[1]</u> -	600	V
		BTA312-800B; BTA312-800C	-	800	V
I _{T(RMS)}	RMS on-state current	full sine wave; $T_{mb} \le 101 \text{ °C}$; see Figure 4 and 5	-	12	A
I _{TSM}	non-repetitive peak on-state current	full sine wave; $T_j = 25 \text{ °C prior to}$ surge; see <u>Figure 2</u> and <u>3</u>			
		t = 20 ms	-	95	А
		t = 16.7 ms	-	105	А
l ² t	I ² t for fusing	t = 10 ms	-	45	A ² s
dl _T /dt	rate of rise of on-state current	$I_{TM} = 20 \text{ A}; I_G = 0.2 \text{ A};$ $dI_G/dt = 0.2 \text{ A}/\mu \text{s}$	-	100	A/μs
I _{GM}	peak gate current		-	2	А
P _{GM}	peak gate power		-	5	W
P _{G(AV)}	average gate power	over any 20 ms period	-	0.5	W
T _{stg}	storage temperature		-40	+150	°C
T _i	junction temperature		-	125	°C

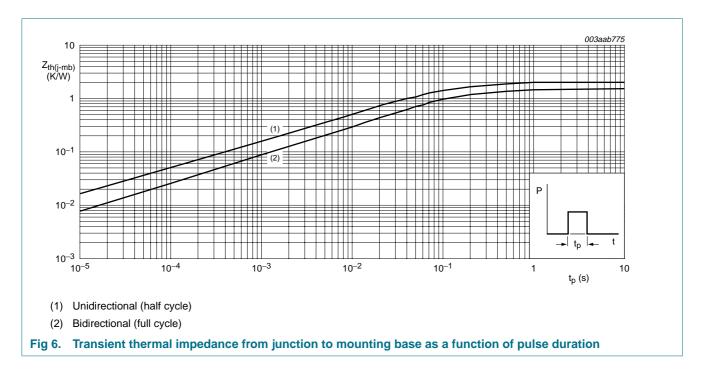
[1] Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 15 A/μs.

BTA312 series B and C


12 A Three-quadrant triacs high commutation

BTA312_SER_B_C_1

BTA312 series B and C


12 A Three-quadrant triacs high commutation

12 A Three-quadrant triacs high commutation

Thermal characteristics 5.

Table 4.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to	half cycle; see Figure 6	-	-	2.0	K/W
	mounting base	full cycle; see Figure 6	-	-	1.5	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	-	60	-	K/W

Thermal characteristics Table 4

12 A Three-quadrant triacs high commutation

6. Static characteristics

Table 5. Static characteristics

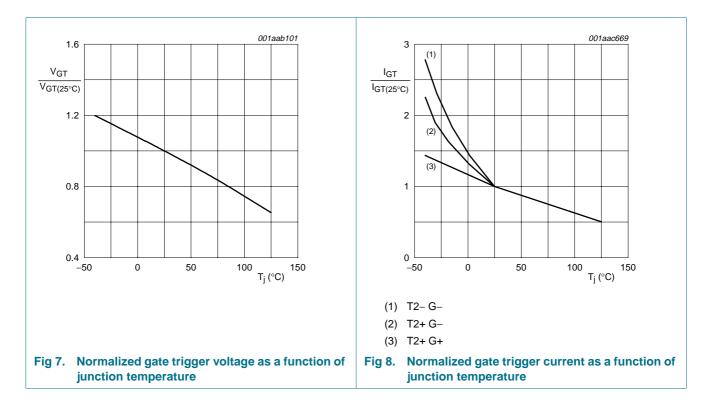
 $T_i = 25 \circ C$ unless otherwise specified.

Parameter	Conditions		BTA312-600B BTA312-800B			BTA312-600C BTA312-800C			
		Min	Тур	Max	Min	Тур	Max		
gate trigger	$V_D = 12 \text{ V}; \text{ I}_T = 0.1 \text{ A}; \text{ see } \frac{\text{Figure 8}}{\text{Figure 8}}$								
current	T2+ G+	2	-	50	2	-	35	mA	
	T2+ G-	2	-	50	2	-	35	mA	
	T2- G-	2	-	50	2	-	35	mA	
L latching current	$V_D = 12 \text{ V}; \text{ I}_{GT} = 0.1 \text{ A}; \text{ see } \frac{\text{Figure } 10}{100000000000000000000000000000000$								
	T2+ G+	-	-	60	-	-	50	mA	
	T2+ G-	-	-	90	-	-	60	mA	
	T2- G-	-	-	60	-	-	50	mA	
holding current	$V_D = 12 \text{ V}; \text{ I}_{GT} = 0.1 \text{ A}; \text{ see } \frac{\text{Figure } 11}{100000000000000000000000000000000$	-	-	60	-	-	35	mA	
on-state voltage	I _T = 15 A; see <u>Figure 9</u>	-	1.3	1.6	-	1.3	1.6	V	
gate trigger	$V_D = 12 \text{ V}; I_T = 0.1 \text{ A}; \text{ see } \frac{\text{Figure 7}}{100000000000000000000000000000000000$	-	0.8	1.5	-	0.8	1.5	V	
voltage	V_D = 400 V; I_T = 0.1 A; T_j = 125 $^\circ C$	0.25	0.4	-	0.25	0.4	-	V	
off-state current	$V_D = V_{DRM(max)}; T_j = 125 \ ^{\circ}C$	-	0.1	0.5	-	0.1	0.5	mA	
	gate trigger currentlatching currentholding currenton-state voltagegate trigger voltage	$ \begin{array}{l} \mbox{gate trigger} \\ \mbox{current} & V_D = 12 \ V; \ I_T = 0.1 \ A; \ see \ Figure \ 8 \\ \hline T2+ \ G+ \\ \hline T2+ \ G- \\ \hline T2- \ G- \\ \hline \\ \mbox{latching current} & V_D = 12 \ V; \ I_{GT} = 0.1 \ A; \ see \ Figure \ 10 \\ \hline T2+ \ G+ \\ \hline T2+ \ G- \\ \hline T2- \ G- \\ \hline \\ \mbox{holding current} & V_D = 12 \ V; \ I_{GT} = 0.1 \ A; \ see \ Figure \ 11 \\ \hline \\ \mbox{on-state} & V_D = 12 \ V; \ I_{GT} = 0.1 \ A; \ see \ Figure \ 11 \\ \hline \\ \mbox{on-state} & V_D = 12 \ V; \ I_{GT} = 0.1 \ A; \ see \ Figure \ 11 \\ \hline \\ \mbox{on-state} & V_D = 12 \ V; \ I_{GT} = 0.1 \ A; \ see \ Figure \ 11 \\ \hline \\ \mbox{on-state} & V_D = 12 \ V; \ I_{T} = 0.1 \ A; \ see \ Figure \ 11 \\ \hline \\ \mbox{on-state} & V_D = 12 \ V; \ I_T = 0.1 \ A; \ see \ Figure \ 7 \\ \hline \\ \mbox{woltage} & V_D = 12 \ V; \ I_T = 0.1 \ A; \ see \ Figure \ 7 \\ \hline \end{array} $	$\begin{tabular}{ c c c } & BT \\ \hline Min $\end{tabular} \\ \hline Min $\end{tabular} \\ \hline \end{tabular} \\ \hline $	$\frac{BT \rightarrow 312-84}{Min}$ $\frac{BT \rightarrow 312-84}{Min}$ $\frac{BT \rightarrow 312-84}{T2+G}$ $\frac{V_{D} = 12 V; I_{T} = 0.1 A; see Figure 8}{T2+G+}$ $\frac{12+G+}{T2-G-}$ $\frac{2}{T2-G-}$ $\frac{2}{T2-G-}$ $\frac{2}{T2-G-}$ $\frac{2}{T2+G+}$ $\frac{12+G+}{T2+G+}$ $\frac{12+G+}{T2+G-}$ $\frac{12+G+}{T2+G-}$ $\frac{12+G+}{T2+G-}$ $\frac{12+G+}{T2+G-}$ $\frac{12+G+}{T2+G-}$ $\frac{12+G+}{T2-G-}$ $\frac{12+G+}{T2-G$	$\begin{tabular}{ c c c c } \hline BT + 312 + 30 + 312 + 30 + 312 + 30 + 312 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + 3$	$\frac{BT + 312 - 80 - 8}{Min} = \frac{BT}{12} + 30 - 8 + 30 + 30 + 30 + 30 + 30 + 30 + 30 + $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

BTA312 series B and C

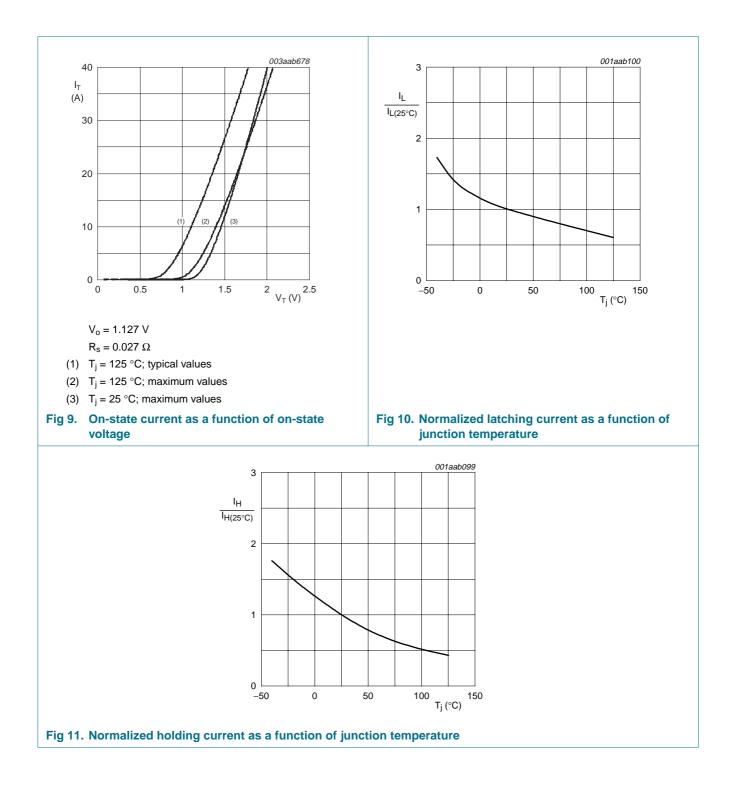
12 A Three-quadrant triacs high commutation

BTA312-600C


Unit

BTA312-600B

7. Dynamic characteristics


Table 6.	Dynamic o	haracteristics	
Symbol	Parameter	Conditions	

			BT/	4312-80	0B	BTA	\312-80	0C	
			Min	Тур	Max	Min	Тур	Max	
dV _D /dt	rate of rise of off-state voltage	$V_{DM} = 0.67 \times V_{DRM(max)}$; $T_j = 125 \text{ °C}$; exponential waveform; gate open circuit	1000	2000	-	500	-	-	V/µs
dl _{com} /dt	rate of change of commutating current	V_{DM} = 400 V; T _j = 125 °C; I _{T(RMS)} = 12 A; without snubber; gate open circuit	30	-	-	20	-	-	A/ms
t _{gt}	gate-controlled turn-on time	$\begin{split} I_{TM} &= 20 \text{ A}; V_D = V_{DRM(max)}; I_G = 0.1 \text{ A}; \\ dI_G/dt &= 5 A/\mu \text{s} \end{split}$	-	2	-	-	2	-	μs

BTA312 series B and C

12 A Three-quadrant triacs high commutation

BTA312 series B and C

12 A Three-quadrant triacs high commutation

8. Package outline

						+ + =		↓ q q L ₂			unting ase		A1			
DIMENS	IONS (r	nm are t	he origi	nal dime	nsions)		0		5 <i>,</i> 1ale	0 mm						_
UNIT	Α	A ₁	b	b ₁	С	D	D1	E	e	L	L1	L ₂ max.	р	q	Q	
	4.7 4.1	1.40 1.25	0.9 0.6	1.45 1.00	0.7 0.4	16.0 15.2	6.6 5.9	10.3 9.7	2.54	15.0 12.8	3.30 2.79	3.0	3.8 3.5	3.0 2.7	2.6 2.2	
mm																
						_										
ou			IE	<u>с</u>		R JEDEC	EFERE		ITA					OPEAN		ISSUE DATE

Fig 12. Package outline SOT78 (3-lead TO-220AB)

12 A Three-quadrant triacs high commutation

9. Revision history

Table 7. Revision hist	Revision history									
Document ID	Release date	Data sheet status	Change notice	Supersedes						
BTA312_SER_B_C_1	20070313	Product data sheet	-	-						

12 A Three-quadrant triacs high commutation

10. Legal information

10.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

10.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

10.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

10.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

11. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

BTA312 series B and C

12 A Three-quadrant triacs high commutation

12. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 5
6	Static characteristics 6
7	Dynamic characteristics7
8	Package outline 9
9	Revision history 10
10	Legal information 11
10.1	Data sheet status 11
10.2	Definitions 11
10.3	Disclaimers
10.4	Trademarks 11
11	Contact information 11
12	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 13 March 2007 Document identifier: BTA312_SER_B_C_1

